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Abstract
X-ray diffuse scattering for single crystals of KTa1−xNbxO3 (x = 0, 0.007
and 0.011) has been measured. For the sample of x = 0.011, peculiar
x-ray diffuse scattering is observed above the phonon-frozen-in temperature
(30 K). By an analysis of the diffuse scattering intensities, the average radius
of the ferroelectric microregions is found to grow up to around 4 nm with
decreasing temperature from 100 K down to 30 K. Anisotropic distributions
of the diffuse scattering indicate off-centred shift of Nb and Ta ions to the
〈111〉-direction. Moreover, lattice constants for x = 0.011 below 30 K exhibit
negative expansion, which is found neither in pure KTaO3 nor in KTa1−xNbxO3

(x = 0.007) at low temperatures. These results are successfully explained by
introducing the effective classical potential (ECP) method for the anharmonic
oscillators. The quantum contribution to mean square displacement of Nb and
Ta ions from an average position is also calculated by the ECP method.

1. Introduction

It is well known that pure KTaO3, whose structure is a simple cubic perovskite (space group
Pm3m), shows characteristics of a typical quantum paraelectric. Recently, refinement of
temperature dependence of the zone-centre soft-mode frequencies of KTaO3 and SrTiO3

was experimentally achieved by hyper-Raman scattering and theoretically performed by the
method of effective classical potential (ECP) for linear-coupled anharmonic oscillators [1].
Ferroelectric transition is suppressed by quantum fluctuations, that is, zero-point motion at
low temperature.

In nominally pure KTaO3, Raman scattering from the soft-phonon branch in the Brillouin
zone is induced by non-intentionally doped impurity [2, 3]. From observing an increasing
scattering with lowering temperature, the origin is ascribed to the ferroelectric microregion
(FMR), which centres at the impurity. The size of FMR changes from the order of the lattice
constant, a(T ), at a high temperature to about 10a(T ) at the lowest temperature. Here, the
shape of the FMR was assumed as either a sphere [3] or an ellipsoid [2]. In an NMR experiment
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[4], it was found that the position of Nb impurities shifts from their cubic position below Tc in
KTa1−xNbxO3 (KTN) (x = 0.012) and the host lattice forms the regions both of off-centred
Ta and on-centred Ta. In K1−xLixTaO3 (KLT), a dipole is attributed to the off-centred position
of Li near the ideal cubic K positions and its structure was calculated by a shell model [5].

In mixed crystals of KTN and KLT with the dilute contents, substitutional impurities play
an important role in the structural behaviour relevant to soft phonon modes. Phase diagrams
of KTN and KLT were reported in connection with quantum-ferroelectric and quantum-
paraelectric phases [6, 7]. However, Gehring et al [8] did not find phase a transition in powdered
crystals of KTN(x = 0.020 and 0.030), though single crystals of KTN(x = 0.012, 0.020 and
0.030) exhibited a ferroelectric phase transition (Tmin = 25, 39 and 60 K). At the same time,
these crystals showed negative thermal expansions at the low temperatures. The electric dipole
glass has no long-range order (LRO) but short-range order (SRO) with the analogy of spin glass.
In KTa1−xNbxO3 with x = 0.008, 0.012 and 0.02, Kleemann et al [9] have observed smeared
phase transitions (Tc = 10 K, 17 K and 31.5 K) with LRO by refractive-index and linear-
birefringence measurements. An idea of a ‘cooperative dipole glass’ has been introduced
to explain their results; clusters, which have SRO, interact with each other. The cooperative
dipole glass seems to be similar to the recently discussed relaxor [10] such as PbMg1/3Nb2/3O3

and PbSc1/2Ta2/3O3 with respect to dielectric properties. Here, the relaxors are related with
charge ordering, though KLT and KTN are not.

A neutron inelastic scattering experiment in KTN(x = 0.012) was carried out to clarify
the relationship between the dipole glass transition and phonon softening [11, 12]. As the
result, the incomplete softening at the zone-centre TO mode [11] was observed at 20 K, whose
result coincides with the results by light scattering; both results show the minimum frequency
at 20 K. Moreover, the TA phonon mode [12] was investigated in KTN(x = 0.00, 0.012 and
0.03). In particular, the mode in KTN(x = 0.012) has smallest frequency at 20 K and is
strongly coupled with the TO mode. TA phonon mode is the lowest mode in all branches
and couples with TO mode near the zone centre [13, 14]. Further, Andrews [15] observed an
abnormal x-ray diffuse scattering both from KTN and KLT under zero electric field or non-zero
electric field, whose diffuse scattering appears close to Bragg reflections.

In this study, we have measured x-ray diffuse scattering for single crystals of KTN to
investigate the shape and size of FMR and also obtained an x-ray diffraction pattern to determine
to the temperature dependence of the lattice parameter.

2. Theory

2.1. The effective classical potential method

The mean square displacements are calculated by using the effective classical potential (ECP)
method [1]. We employ the ECP, V (u), for the off-centred Nb and Ta ion motion as follows,

V (u) = 1
2Mω

2
1u

2 + λu4 + µu6 (µ > 0) (1)

where u is the atomic displacement from an average position, ω1 is the oscillator frequency
in the harmonic limit and M is an appropriate mass. λ and µ indicate quartic and sextic
anharmonicity coefficients, respectively. For simplicity, energies, temperatures and lengths
are normalized by h̄ω1, T1 and (h̄/Mω1)

1/2, respectively (T1 = h̄ω1/kB), where kB is the
Boltzmann constant. Then, equation (1) becomes

V (u) = 1

2
u2 + λ̃u4 + µ̃u6 λ̃ = λ h̄ω1

(Mω2
1)

2
µ̃ = µ (h̄ω1)

2

(Mω2
1)

3
(µ̃ > 0). (2)
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Using this potential, the mean square displacement from an average position, 〈u2〉ECP , is given
by

〈u2(T )〉ECP = 〈ζ 2(T )〉 + 〈a2(T , ζ )〉 (3)

where ζ is the ‘classical’ displacement coordinate and a2(T , ζ ) is the quantum contribution
to the mean square displacement for the anharmonic oscillator. ζ is defined as the average
value of u. The model calculation is performed as the average of V (u) over a Gaussian
displacement distribution at the centre of the ‘classical’ position ζ . a2(T , ζ ) is derived from
the self-consistent calculation and is described in appendix B of [1].

2.2. Thermal diffuse scattering

For simplicity, we introduce q as q = K − Ghkl , where K is the scattering vector and Ghkl is
the reciprocal lattice vector for the (hkl) plane. Due to the elastic wave of wavevector q and
vibration direction ej (j = 1, 2, 3), the displacement of atom n can be expressed by

un(qj) = aqjeqj exp{i(K · rn − ωqj t)}. (4)

Using the average energy associated with the wave qj , 〈Eqj 〉, the first-order thermal diffuse
scattering (TDS) is described as [16]

I1(K) = |F |2
Vcm

∑
j

(Keqj )
2〈Eqj 〉

ω2
qj

〈Eqj 〉
ω2
qj

∝ 〈a2
qj 〉 (5)

where F is the structure factor containing the temperature factor, Vc is the volume of the unit
cell. Furthermore, we calculate the advanced TDS intensities by Wooster’s method [17]. This
equation is written as

I TDS(q, T ) = |F |2
Vc

(
K

q

)2 ∑
i,j,l

ĥi ĥj (A
−1)ij 〈Eql〉 ĥ = Ghkl/|Ghkl| (6)

Aij consists of q̂ = q/|q| and elastic constants, C11, C12 and C44 for cubic crystals. Here,
elastic anisotropy is expressed byAij , that is, the gradient at q = 0 of phonon dispersion curve.

2.3. Huang diffuse scattering

According to Huang diffuse scattering (HDS) theory [18], IHDS(q) is connected with the
symmetry of static dilute defects. This symmetry is described by a dipole tensor, Pij . For
instance, Pij in equation (7) reveal a [111]-dipole tensor. Note that IHDS(q) is not derived
from defects themselves, but from the distorted region around them. Since the strain is spread
over the whole crystal in real space, HDS appears around the zone centre in the reciprocal
lattice. Generally, we can ignore the scattering from defect themselves due to low impurity
concentration. If defect concentration increases and one defect has a correlation with others, the
modulations of diffuse scattering are observed along various directions. IHDS(q) is provided
by

IHDS(q) = c|F |2
(
Ghkl

q

)2 ∣∣∣∣ 1

Vc

∑
i,j,l

ĥigij (q̂)q̂lPjl

∣∣∣∣
2

Pij =
(
P11 P12 P12

P12 P11 P12

P12 P12 P11

)
. (7)

gij (q̂) is a function of elastic constants, C11, C12 and C44 for cubic crystals. c is the
concentration of defects. In the cluster of defects, IHDS(q, T ) is proportional to the number of
defects within one cluster. In addition, these local defects have a relation with lattice constants
as a macroscopic property. For instance, interstitial impurities cause the lattice expansion.
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On the other hand, atomic vacancies cause the negative lattice expansion. The lattice change
is calculated as

)V

V
= 3

)a

a
= c

∑
i Pii

Vc(C11 + 2C12)
(8)

for cubic crystals.

3. Experiment

Single crystals of KTa1−xNbxO3 were prepared with the use of the top-seeded solution growth
method at the University of Tsukuba. We have used four single crystals, with Nb compositions,
x, of 0.000, 0.007, 0.011 and 0.025, whose sizes are 6.4×6.0×1.5 mm3, 4.3×3.2×2.4 mm3,
3.4 × 3.1 × 2.4 mm3 and 9.3 × 7.2 × 4.6 mm3, respectively. The faces of the specimens
are perpendicular to 〈100〉 directions. The Nb composition was determined by the electron-
probe microanalysis. First, we have performed experiments on temperature dependence of
lattice constants for the specimens by x-ray diffraction methods with the use of reflection
geometry, where KTN(x = 0.025) was measured only at room temperature. Cu Kᾱ radiation
was used as the primary beam. Highly oriented pyrolytic graphite (002) was used to obtain a
monochromated beam, whose wavelength, λ, is 0.154 18 nm. Lattice constants were estimated
from the position of Bragg peaks in a range from room temperature to 16 K on a low-temperature
four-circle diffractometer at the University of Tsukuba. The cryostat, mounted on a Huber
Eulerian cradle (model 512), was a closed-cycle cryogenic refrigerator manufactured by Air
Products (model DE202). As diffuse scattering deriving from defects appears near Bragg
reflections, we needed high-resolution x-ray experiments to reduce the intensities from the
tail of Bragg reflections. Hence, we have performed the measurement to take the temperature
dependence of diffuse scattering on a Huber 5020.4 four-circle diffractometer installed at BL-
4C at the Photon Factory of the High Energy Accelerator Research Organization. The curved
mirror was placed before a Si(111) double monochromator to obtain a stronger primary beam,
whose wavelength was 0.1542 nm. The cryostat was the same type as that at the University of
Tsukuba. The mosaic spread of KTN(x = 0.011) was 0.0348 (nm−1), where the full width at
half maximum (FWHM) at BL-4C for the incident beam was found to be 0.0057 (nm−1). The
temperature of the sample was stabilized within ±0.05 K.

4. Experimental results and analysis

Lattice constants of KTN(x = 0.000, 0.007, 0.011 and 0.025) have composition dependence
at room temperature as shown in figure 1, where the lattice constant increases slightly with
increasing Nb concentration. Figure 2(a) shows the temperature dependence of lattice constants
for the three specimens (x = 0.00, 0.007 and 0.011). Each lattice constant was obtained by
the average of plus 2θ and minus 2θ values for the coupled Bragg reflections. This method can
compensate for the errors of sample centring or beam centring. For x = 0.011, we find negative
thermal expansion below 30 K, though the normal behaviour of temperature dependence of
the lattice constants appears for x = 0.000 and 0.007.

On the other hand, integrated intensity I (T ) is connected with lattice constant a(T ) and
the isotropic temperature factor B(T ) (= 8π2〈u2〉) as follows:

I (T )

I (0)
= exp

{
− 2B(T )

(
sin θ

λ

)2 }
= exp

{
−B(T )h

2 + k2 + l2

2{a(T )}2

}
. (9)

Temperature dependences of the average integrated intensity in several Bragg reflections were
obtained in pure KTaO3, KTN(x = 0.007) and KTN(x = 0.011), respectively. By using
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Figure 1. Lattice constants of KTa1−xNbxO3 as a function of Nb composition at room temperature.

Table 1. Nb concentration dependence ofT1, λ̃ and µ̃ of 〈u2〉ECP . These parameters are determined
by self-consistent calculations using ECP method (see text). Those for pure KTaO3 (x = 0.000)
refer to [1].

x T1 (K) λ̃ µ̃

0.000 (53) (0.6) (0.0)
0.007 110 0.58 0.00
0.011 225 0.53 0.00

equation (9), the isotropic temperature factor was obtained from the observed integrated
intensities and the lattice parameter as shown in figure 2(b). The temperature factor is linear
with temperature at high temperatures, but is almost constant below 100 K. This can be
attributed to the quantum effect of the zero-point atomic motion. Solid curves in figure 2(b)
are calculated by the following procedure. We invoke the dominant fluctuation of the atomic
displacement as that of the ferroelectric soft TO [100] mode. This is because the frequency
for the soft TO phonon is nearly equal to that of acoustic phonon. Considering the only TA
phonon mode, we calculate the mean square displacement, 〈u2(T )〉ECP , using equations (1)–
(3). This 〈u2(T )〉ECP is connected with the lattice constant in equation (9). a2(T , ς) is
effective at low temperature by the influence of anharmonic displacements relating to the
precursor phenomenon of the phase transition. Comparing 〈u2〉ECP with 〈u2〉obs , parameters
T1, λ̃ and µ̃ are determined self-consistently. The actual best-fitted parameters, T1, λ̃ and µ̃
of 〈u2〉ECP are shown in table 1, where we refer to Vogt’s results for pure KTaO3 [1]. Solid
curves in figure 2(b) are those fitted by the ECP method. We find that T1 increases with
Nb content, while λ̃ is essentially constant. Decreasing mass value from Ta to Nb seems
to affect the increasing frequency. Finally, the solid curves in figure 2(a) are derived from
BECP (T , T1, λ̃, µ̃) and a polynomial fit of the observed integrated intensity.

Figure 3 shows the temperature dependence of the full width at half maximum (FWHM)
of KTN(x = 0.011) for a radial scan of the 002 Bragg reflection, where data were obtained
at the Photon Factory of the High Energy Accelerator Research Organization. We refer to
the temperature dependence of the lattice constant of KTN(x = 0.011) in order to emphasize
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(a)

(b)

Figure 2. (a) Lattice constants of KTa1−xNbxO3 as a function of temperature. Open circles, open
squares and solid circles correspond to x = 0.000, x = 0.007 and x = 0.011, respectively. Each
solid line is calculated by using the effective classical potential (ECP) method (see text), where
only a solid curve in pure KTaO3 is calculated using parameters in a previous paper [1]. (b) The
temperature dependence of the isotropic temperature factor, B(T ). Open circles, open squares and
solid circles correspond to x = 0.000, x = 0.007 and x = 0.011, respectively. B(T ) is determined
by the temperature dependence of both integrated intensities and lattice constants. Solid curves are
calculated by using the ECP method.

the negative thermal expansion below 30 K. The value of FWHM increases below 30 K,
where the negative thermal expansion is seen. The increase of FWHM was also seen in the
103 Bragg reflection. These increases of FWHM agree with previous results [12], where the
lattice constant of KTN(x = 0.012) has a minimum value at 20 K (Tmin). Furthermore, both
TO and TA phonon modes are reported to have the minimum energy at Tmin. On the other
hand, we find that the FWHM of the 202 Bragg reflection has no increase below 30 K.
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Figure 3. Temperature dependence of the full width at half maximum (FWHM) of the 002 Bragg
reflection along the radial direction in KTa1−xNbxO3 (x = 0.011) (open circles). FWHM also
increases below 30 K. To emphasize the anomaly below 30 K, lattice constants (closed circles) are
also seen.

In KTN(x = 0.011), the observed diffuse intensities are provided as I diff (q, T ) =
I TDS(q, T ) + IHDS(q, T ) + IBG(q), where IBG(q) represents the intensity of the background
(BG). We estimate the background using an Si single crystal. Equation (6) represents the
contributions of various TA phonon modes around the zone centre, because the TA phonon
mode is coupled with TO phonon softening around the zone centre. Here, the temperature
dependence of elastic constants in pure KTaO3 [19, 20] is included in (A−1)ij in equation (6).
Here, we analyse the observed diffuse scattering intensity: the calculated 〈u2(T )〉ECP is
proportional to 〈Eqj 〉 in equation (5). Using the temperature dependence of diffuse scattering
above 100 K, we scaled the calculated intensity into the observed one. This is because
additional diffuse scattering appears below 100 K. In figure 4, the temperature dependence of
diffuse scattering intensity at ξ = 0.629 along the G002 + q[ξ00] direction in KTa1−xNbxO3

(x = 0.011) was depicted, where the reciprocal lattice unit (r.l.u.) is used to present the q
value. In the figure, we have averaged diffuse scattering intensities to ignore the asymmetric
part due to size effect modulation. Symmetric diffuse intensities, S(q, T ), were estimated as
{I diff (q, T ) + I diff (−q, T )}/2. A broken curve is quite different from the observed values
below 100 K. Thus, we assume the following concept to interpret the above discrepancy.
Raman scattering experiment revealed that FMR grows below 100 K with accompanying
phonon softening [2, 3]. Here, the components of FMR are an off-centred Nb ion at the centre
of FMR and an off-centred Ta ion surrounding it. Since Nb ions are substituted for Ta ones
randomly, FMR appears below 100 K independently. The increase of the diffuse scattering
intensity below 100 K can be attributed to the increase of the size of FMR. Diffuse scattering
intensities are, however, decreasing below 30 K. Considering the lattice expansion below 30 K
as shown in figure 3, we judge that further growth of FMR due to its cooperate interaction with
each other expands to the whole crystal. Here, FMR with large volume leads to the diffuse
scattering with a smaller q region. Thus, diffuse scattering intensities within the observed q
region decrease below 30 K.
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Figure 4. Temperature dependence of diffuse scattering at ξ = 0.629 along the G002 + q[ξ00]
direction in KTa1−xNbxO3 (x = 0.011), where the unit of q is the reciprocal lattice one. A solid
line shows the summation of the calculated thermal diffuse scattering and Huang diffuse scattering,
while a broken line shows the calculated thermal diffuse scattering.

We propose the following model in order to analyse experimental results based on the
above concept. The displacement direction of off-centred both Nb and Ta ions in FMR is the
[111]-direction. Because the soft phonon mode of TA[100] is coupled with other equivalent
TA[010] and TA[001] phonon modes near the zone centre below 100 K, three phonon modes
become the TA[111] mode and cause the [111]-displacements. The [111]-displacement at
low temperatures is expected from the phase diagram of KTaO3–KNbO3, because the lowest-
temperature phase has rhombohedral symmetry [21]. Moreover, Eglitis et al [22] suggested
that the direction of off-centred Nb ion prefers the [111]-direction to [100]. We apply this
idea to the isolated FMR. In this case, an expression for concentration of total dipoles, c in
equation (8), is rewritten as xNcl (x = 0.011), where Ncl is the number of off-centred dipoles
within one FMR. Therefore, equation (8) is modified as follows:

3
)a

a
= xNcl

∑
i Pii

Vc(C11 + 2C12)
. (10)

The actual magnitude of dipoles within FMR decreases with increasing distance from the centre
of FMR. However, we consider uniform dipoles within FMR and ignore the size distribution
of FMR. Thus, an actual average size of FMR is estimated to be larger than the calculated one.
Next, we assume that the shape of FMR is spherical for simplicity. Ncl has a relation with the
radius, Rcl , of a spherical FMR and is described as

NclVc = (4π/3)R3
cl . (11)

Pij (T ) in equation (7) is the dipole tensor of the defects along the [111]-direction. The
temperature dependence of P11(T ) is determined by equation (8) with the lattice constant.
In HDS theory, local defects provide the long-range strain over the whole crystal elastically.
This strain has an influence on the lattice constant as the macroscopic property. The origin
of diffuse scattering from defects is not a part of the local strains generated by defects
themselves, but long-range strains. Hence, inhomogeneous strains are connected with the
lattice constant by equation (8). On the other hand,Rcl(T ) andP12(T ) are unknown. The HDS
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intensity depends both on the concentration term, xNcl(T ), and the Pij (T ) term. Though
both terms have the relation with Rcl(T ) in equations (10) and (11), they are of the opposite
property. Ncl(T ) is proportional to {Rcl(T )}3, but Pij (T ) is nearly inversely proportional
to Ncl(T ) by equation (8). This competition between Ncl(T ) and Pij (T ) makes it difficult
to calculate HDS intensities. Therefore, we introduce the self-consistent calculations by
Monte Carlo methods to determine Rcl(T ). The judgement of the Monte Carlo calculation
is obtained by the convergence of weighted reliability factor, wR, since HDS intensities
is stored from 10 to 10 000 counts: wR is (= √∑

w|I obs − I cal|2/∑w|I obs |2), where
I cal = Ncl(T )I

HDS(q, T ), I obs = S(q, T )− I TDS(q, T )− IBG(q) and w = 1/I obs . Elastic
constants, C11, C12 and C44 in equation (7) are the same value as used in the TDS calculation.

As the result, Rcl(T ) values in various directions are calculated as shown in figure 5. The
derived value of the FMR size below 100 K at each direction is found to be around 4 nm. It is
considered that we succeed to remove TDS from the total diffuse intensity, because the above
calculation results of FMR size provide almost the same order among different three directions;
these are the L (longitudinal) direction of 002 and both L and T (transverse) directions of the
103 Bragg reflection. In the other three directions which are 002 (T direction) and 202 (T and
L directions), the self-consistent Rcl(T ) calculations have no coincidence with experimental
results. The reason is why the calculated HDS intensities become zero or so small compared
with the calculated TDS intensities. In detail, we discuss the anisotropic distributions of HDS
later. While, the observed diffuse intensity is decreasing below 30 K as shown in figure 5. We
interpret that the decrease of the calculated size of FMR below 30 K is caused by experimental
restriction of q region. The actual size of FMR is probably increasing continuously below
100 K. The previous study shows continuous growth of FMR below 100 K [2, 3]. This proves
that the method of above calculation and the assumption are accurate. A solid line in figure 4
shows the calculated intensity of the total diffuse scattering at G002 +q[ξ00] (ξ = 0.629) using
the calculated Rcl(T ).

Figure 5. Temperature dependence of the calculated radius of FMR cluster, Rcl . Rcl values along
various directions are analyzed by the self-consistent Monte Carlo method using the observed
diffuse scattering.

The next step is to investigate both q and temperature dependences of diffuse scattering at
various directions. Figure 6(a) shows the temperature dependence of the observed diffuse
scattering intensity at G002 + q[ξ00], where each line designates the intensity contour.
Figure 6(b) shows the temperature dependence of the calculated one at the same direction.
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Figure 6. Temperature dependence of (a) the observed diffuse scattering, (b) the calculated one,
(c) the calculated Huang diffuse scattering (HDS) and (d) the calculated thermal diffuse scattering
(TDS) along G002 + q[ξ00] in KTa1−xNbxO3 (x = 0.011).

Figure 6(b) can be divided into two contributions; one is HDS as seen in figure 6(c) and the
other is TDS as seen in figure 6(d). The calculated HDS intensity has a coincidence with
the observed one. To clarify the direction dependence of diffuse scattering, we show the
normalized diffuse scattering intensities, S(q), at 60 K along the various directions as shown
in figure 7. S(q) is given by

S(q, 60 K) = {I diff (q, 60 K)− IBG(q)}/|f̄ |2 f̄ = fK + (1 − x)fT a + xfNb + 3fO
(12)

where fK , fT a , fNb and fO are the atomic scattering factors of K, Ta, Nb and O ions,
respectively. Note that both HDS and TDS intensities are proportional to |Ghkl|2 in
equations (6) and (7). In fact, S(q) along G103 (T and L direction) are larger than those along
G002. However, the above relationship cannot be satisfied in S(q) around 002 and 202 Bragg
reflections. Along T direction, S(q) around the 202 Bragg reflection is much smaller than that
around the 002 one, though |G202|2 is greater than |G002|2. This remarkable difference of S(q)
between 202 and 002 results in the FMR symmetry, where both HDS and TDS contributions
must be considered at this temperature. In general, the anisotropic distributions of TDS are
caused by the anisotropy of elastic constant. On the other hand, HDS depends on q directions
by both FMR symmetry and elastic anisotropy.

Further, an analysis of diffuse intensities at different directions makes clear the [111]-
displacement of off-centred Nb and Ta. In particular, the anisotropic distributions of diffuse
scattering around the 202 Bragg reflection are the key to resolving FMR symmetry. In fact,
the calculation of HDS with the [111]-displacements of Nb and Ta ions is the most appropriate
distribution among [100]-, [110]- and [111]-displacement models as shown in figures 8(a),
8(b) and 8(c), respectively. The calculated HDS with [111]-displacement at G202 (T direction)
becomes 0 due to FMR symmetry by HDS theory, as shown in figure 8(c). On the other hand,
the calculated ones with [100]- or [110]-displacement in the same direction are nearly three
times larger than those at G202 (L direction). We conclude that the direction of off-centred Nb
and Ta is the [111]-direction by the above analysis. In addition, very weak diffuse scattering
at G202 (T direction) suggests their actual displacements are not the exact [111]-direction.
The dipoles along the [111]-direction have random and small rotational fluctuations along the
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Figure 7. Temperature dependence of the observed diffuse scattering at 60 K along transverse and
longitudinal directions around 002, 202 and 103 Bragg reflections.

[111]-directions, while we calculate the TDS distribution around the 202 Bragg reflection for
comparison (figure 8(d)). In this case, the anisotropic distribution of TDS is derived from
TA[100] phonon softening.

There is another method to determine the size of FMR. Diffuse intensity exhibits both q−2

and q−4 dependences if distinct clusters of defects are generated, as shown in figure 9. HDS
theory [18] exhibits that the crossover point, qc, from the q−2 to q−4 dependences, provides an
average cluster size. As a result, FMR size is estimated to be 10 nm by qc along G002 + q[00ξ ]
at 60 K from figure 9. Rcl is estimated to be 4 nm in figure 5. The estimation of FMR size from
qc is comparable to that from Rcl , since the diameter of the spherical FMR becomes 8 nm.

5. Remarks

At first, we discuss the relation between anharmonic quantum fluctuations in the ECP method
and lattice constants. In the ECP method, 〈u2〉 is divided into the classic harmonic fluctuations,
〈ξ 2〉, and anharmonic quantum fluctuations, 〈a2〉. When temperature is smaller than T1, 〈a2〉
is much more effective than 〈ξ 2〉. This is because T1 is defined by the oscillator frequency in
the harmonic limit, while T1 is nearly proportional to Nb concentration. In this system, the
competition between long-range elasticity and glasslike freezing is not so trivial against Nb
composition. Certainly, Nb concentration is an also order parameter of the phase transition in
previous studies [6]. Note that the specific soft mode is not determined by this one-dimensional
model using 〈a2〉, though these anharmonic fluctuations have some relation with phonon
softening at low temperature.

Next, we summarize the appearance and development of FMR. The occurrence and
development of FMR is explained by previous and present results. We distinguish the correlated
FMR below 30 K from the small isolated FMR between 100 and 30 K. FMR is formed
independently at the centre of Nb impurities. Nb impurities are replaced at Ta positions
randomly. Below 100 K, Nb impurities shift to off-centred positions. At the same time, Ta
ions around Nb ions also shift to the off-centred position along the same direction. By observing
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Figure 8. The calculated distributions of Huang diffuse scattering around the 202 Bragg reflection
using the shift of off-centred Nb, whose direction is (a) the [100]-direction, (b) the [110]-direction
and (c) the [111]-direction. (d) For comparison, the calculated distribution of thermal diffuse
scattering around the 202 Bragg reflection is also shown.

the distinct anisotropic distributions of HDS only around G202, we have determined that
the possible off-centred direction is the 〈111〉-direction among the 〈100〉-, 〈110〉- and 〈111〉-
directions. Compared with the simulation of HDS with experimental results, some rotational
fluctuations, which are random and small, are suggested along the 〈111〉-direction. The size
of FMR becomes larger with decreasing temperature with the help of phonon softening. We
estimate the size of FMR at around 10 nm by the q dependence of the HDS intensity. The
increase of diffuse intensities from 100 to 30 K reflects the developments of isolated FMR.

Below 30 K, each FMR has a correlation and strong strains appear over a whole crystal.
This tendency has concurrence with the increases of the lattice constant and of FWHM
of KTN(x = 0.011) below 30 K, since long-range strains contribute to FWHM or to the
lattice constant as a macroscopic property. The correlated FMR develops cooperatively with
increasing size to contact with neighbouring FMR with different polarization directions. Since
it is difficult to consider that FMR disappears below 30 K suddenly, the reasons for decrease
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Figure 9. q dependence of Huang diffuse scattering along the G002 + q[00ξ ] at 60 K. A crossover
point, qc , between q−2 and q−4, can provide the average size of FMR. It is estimated to be around
10 nm.

of HDS intensity in this temperature region are the measurement restrictions of the q region.
Hence, the decrease of HDS means that HDS intensity along various directions shifts to a
smaller q region.

Lattice constants of pure KTaO3 decrease monotonically with decreasing temperature.
Furthermore, the temperature change of lattice constants in KTN(x = 0.007) is smaller than
that in pure KTaO3 over the temperature range between room temperature and 16 K. Their
monotonic decrease is also seen in KTN(x = 0.007) with decreasing temperature. We expect
that the existence of FMR has great influence on not only absolute values of lattice constants but
also the temperature dependence. It is considered that larger FMR appears in KTN(x = 0.011)
at low temperature with the help of phonon softening. The experimental results thus obtained
were compared with previous ones [3, 8]. Andrews [15] showed that both pure KTaO3 and
KTN(x = 0.017) have the same lattice constants at room temperature within experimental
errors. Both lattice constants have almost the same temperature change from room temperature
to 200 K and each of them showed different temperature dependence below 200 K. We did not
find such a behaviour in the temperature change of lattice constants for the three specimens.
On the other hand, the similar experimental result between our results and Andrews’s results is
that pure KTaO3 has no expansions of lattice constants at low-temperature and a small increase
of lattice constants is seen in KTN(x = 0.017). One of the reasons for these is the surface
effect as Andrews pointed out [15], since the penetration depth of x-rays is so small. We have
a plan to measure anisotropic HDS by the neutron diffraction method, since neutrons are more
effective for oxygen distortion and the surface effect is ignored.
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